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HIGHLIGHTS CRAPHICAL ABSTRACT

= The majority (62%) of pollen samples
contained at least one pesticide (2012-
2014).

Multiresidual samiples {38%) were more
frequent than single contaminations
(24%).

Chicrpyrifos was the most frequently
detected pesticide (30%).
Imidacioprid-contaminated  samples
had the highest HQ, with 12% of samples
> 1000.

Health safety levels (ARfD, ADI, MRL)
were exceeded in 39% of the residues.
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Articte history: Honey bee (Apis meilifera L.) health is compromisad by complex interactions between multiple stressors, amiong
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intime and space, we conducted a survey by collecting corbicular pollen from returning honey bee foragers in 53
Italian apiaries during the active beekeeping season of 3 subsequent years {2012-2014).
Of 554 pollen samiples analysed for pesticide residues, 62% contained at least one pesticide. The overall rate of

Editor: Jay Gan mudtiresidual samples (38%) was higher than the rate of single pesticide samples (24%), reaching a maximum of

7 pesticides per sample (1%). Over 3 years, 18 different pesticides were detected (10 fungicides and 8 insecticides)
Keywords: out of 66 analysed. Pesticide concentrations reached the level of concearn for bee health (Hazard Quetient (HQ)
Bee heaith higher than 1000) at least once in 13% of the apiaries and exceeded the thresholds of safety for human dietary intake
Monitoring { Acute Reference Dose (ARID), the Acceptable Datly Intake (ADI), and the Maximurm Residue Limit (MRL)} in 39% of
Mudtiple residues the analysis. The pesticide which was most frequently detected was the insecticide chlorpyrifos (30% of the samples

Chemical mixivre overall, exceeding ARfD, ADL, or MRL in 99% of the positive ones), followed by the fungicides mandipropamid {19%),

metalaxy! (16%), spircxamine (15%), and the neonicotineid insecticide imidacloprid (12%), Imidacloprid had also
the highest HQ level (5054, with 12% of its positive samples wirh HQ higher than 1000).

This 3 year survey provides further insights on the contamination caused by agricultural pesticide use on honey
bee colonies, Bee-collected pollen is shown to be a valuable tool for environmental monitoring, and for the detec-
tion of iliegal uses of pesticides.
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1. Introduction

I the last century agriculture has expanded and intensified
{Ramankutty and Foley, 1999), providing higher crop vields for a grow-
ing world population. The increased agricultural practices however
have had a high environmental cost: habitat loss and widespread use
of pesticides have posed significant negative consequences for wild
flora and fauna (Matson et al,, 1997; McLlaughtin and Mineauy, 1995;
Van Dijk et al, 2013), Thus, it is not surprising that there is an ongoing
global decline of pollinators (Biesmeijer et al, 2008, Potts et al, 2010),
which is alarming due to the important role pollinators play in ecologi-
cal systems and crop productivity (Alzen et al., 2009; Fontaine et al,
2005; Garibaldi et al, 2017; Klein et al, 2007). Honey bees, important
crop pollinators, can be considered as indicators of the health status of
pollinating insects. In fact, because beekeepers rear and monitor bee
colonies worldwide, they are immediately aware of changes in colony
health, productivity, and behaviour. Indeed, it was beekeepers who
alerted the media and scientific community about an increase in the
normal rate of colony mortality around 2006 {Cox-Foster et al, 2007,
The phenomenon was named Colony Collapse Disorder (CCD) or
more generically “colony losses”, and it engendered research initiatives
across the world (Carreck and Neumann, 2010),

Various stressors have been investigated and found to be possible
cause of the phenomenon: parasites and pathogens (Cornman et al,
2012; Cox-Foster et al,, 2007; Dainat et al, 2012; Higes et al, 2010: Le
Conte et al, 2010; Raveet et al, 2013), pesticides (Belzunces et al,,
2012; Desneux ot al, 2007; Sandrock et al, 2014}, climate change
{Memmott et al,, 2007) and nutrition {Archer ef al., 2014}, Much of
the evidence collected in recent years suggests that a combination of
these factors, acting in synchrony and with complex interactions, is re-
sponsible for the increased honeybee colony mortality. Pesticides are
considered to be a key factor, as a multitude of studies have demon-
strated their detrimental effects at both individual and colony level
{Goulson, 2013, Sanchez-Bayo et al, 2016; Sgolastra et al, 2017b; Tosi
et al, 2017; van der Sluijs et al, 2013), Many of these studies were con-
ducted in vitro and/or in semi-field conditions and their results were
guestioned because of the lack of certainty about the actual pesticide
exposure of bees in the field (Blacquiére et al., 2012). However, recent
studies have addressed the problem at the field level and have con-
firmed the detrimental effects of pesticide exposure for bees {Rundisi
et al., 2015; Woodcock ef al,, 2017}, Furthermore, they have shown
that a realistic scenario comprehends a continuous exposure to multiple
pesticides {Botias et al, 2017; David et al,, 2018; Long and Krupke,
20118). Because of the prolonged exposure to the toxins, this kind of con-
tamination may be more harmful to honey bees than pulse exposures
which are normally tested in laboratory conditions {Laycock and
Cresswell, 2013),

Several of the most commonly used pesticides are systemic,
protecting {and contaminating) all plant organs, including flowers—and
thus nectar and pollen. Pollen is the main protein and lipid source for
bee colonies and a fundamental part of the nurse bees’ and larval diet
{Crailshebm et al, 1892), thus its contamination results in exposure of
the new generation of bees, as well as the foraging and receiver bees,
Some studies already evidenced widespread contamination of pollen
from agricultural landscapes, and highlighted common combinations
of pesticides encountered in field environments (Bernal et al, 2010;
Chauzat et al., 2006; Lambert et al, 2013%; Long and Krupke, 2016;
bMullin et al, 2010; Smodis Skerlf et al., 2018). Advocates of chemical
plant protection claim that if the products are used according to good
agricuftural practices the effect on the environment should be negligible
{Cutler et al,, 2014). However, exposure to low levels of pesticides can
elicit sublethal effects on bees, not killing them outright but affecting
their behaviour and immune systern (Desneux et al, 2007}, The detec-
tion of residues at very low levels has become possible, in recent years,
as new analytical techniques have been developed (Stachniuk and
Fornal, 2016).

Foraging honey bees fly to an average distance of about 1.5 km
from the colony (Steffan-Dewenter and Kuhn, 2003; Visscher and
Seeley, 1982), meaning that an area of approximately 7 km? around
the hive is visited by foraging bees. The average size of a European
farm is 0.16 ki (Eurostat, 2012), thus a foraging surface of 7 km” is
normally covered by several crops, exposing a colony placed in a
rural area to multiple pesticides used for different crops. Furthermore,
a multitude of pesticides are available, for example Italian farmers
have access to approximately 130 different active ingredients (aali},
alone or in combination, in about 1280 commercialized products for
plant protection (Ministers del lavors della salute e delle politiche
sociali, 2014).

The aim of this study was to investigate the extent of honey bee
exposure to agricultural pesticide residues in managed honey pro-
ducing colonies. This was achieved by analysing corbicular polien
from returning forager bees (it has been shown that pollen loads
are the best matrix for assessing ongoing pesticide contamination
in the environment {Chauzat et al,, 2011)) and using residue levels
to estimate the risk hazard for honey bees, Furthermore, as polien
is also used for human consumption as a “health food supplement”
{Campos et al, 2003; Carpes et al., 2009; Gratkou et al, 2011;
LeBlanc er al, 2009), the obtained results were compared with regu-
latory agency levels of concern for acute or chronic exposure in
humans.,

2. Material and methods
2.1. Survey period and sites

We used 53 commercial apiary sites located in ftaly (22 apiaries in
2012, 24 in 2013 and 15 in 2014; 8 apiaries were used multiple years)
{¥Fig. 1). A rotal number of 554 pollen samples were collected between
March and September of 3 consecutive years, from 2012 to 2014, Over-
all, the apiaries were located in proximity of agricultural areas and were
randomtby selected across Italy based on apiary size, beekeeper's experi-
ence and beekeeper's ability to adhere to the working protocol of the
survey. Beekeepers experience was estimated based on years of
experience, membership in a beekeeping association, and training
level (frequency of beekeeping meetings, conferences, workshops, and
seminars attended) (EFSA, 2016). About 65% of the beekeepers man-
aged their apiaries according to the organic production protocols
{(European Council, 2007). Within each apiary, 5 gueen-right and
heaithy {i.e. no disease symptoms) honey bee colonies {Apis mellifera
L.) were used for pollen collection,

2.2. Polien collection

Colony management and pollen sampling and shipment were car-
ried out by the beekeepers and apiary technicians. They were provided
with a working protocol defining all monitoring details, and were per-
sonally instructed by expert beekeepers and ecotoxicologists in ad-hoc
meetings to improve the harmonization of the procedure across apiaries
and beckeepers.

Commercially available polien traps were used to dislodge the pol-
len pellets from the corbiculae of returning foraging bees. The pollen
traps were kept in place until 100 g of pollen pellets were collected
{typically 2-7 days). The sampling period and success varied in rela-
tion to weather conditions and pollen import by the colonies, Samples
were collected during the active beekeeping season, in the maost criti-
cal periods for pesticide contamination {e.g. concomitantly with agri-
cultural pesticide freatments), based on expert experience (ie.
consultation of farmers, beekeepers, and agronomists) on the agricul-
tural practices in their area. After collection, the pollen pellets were
homogenized using a glass jar, and 100 g were subsampled and frozen
at — 20 °C. A cool-box was used for shipment of the samples from the
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Fig. 1. Map of Ttaly with the locations of the apiaries used for each year of the survey. We used 22, 24 and 15 apiaries during the 2012, 2013 and 2014 seasous,
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respectively. The name of the

regions involved is reported. To facilitate display, overlapping symbols representing different apiaries in a sarne year were slightly separated.

apiary to the laboratory, to ensure that samples were maintained fro-
zen until analysis,

2.3, Pesticide residue analysis

A high sensitivity method was developed and validated for the de-
tection of residues in honey bee-collected pollen of 66 pesticides most
commonity used in italy, including acaricides, fungicides, insecticides,
nematicides, and some metabolites{Table 1).

The pollen was prepared in two steps. First, a solid/liquid extraction
with solvent and MSPD purification: 10 g of each pollen sample was ex-
tracted with acetonitrile/water, followed by liguid/liquid purification
with hexane and combined with MSPD purification on PSA and Salts,
Then, the purified extract was concentrated to below 100 pL volume
and injected into UPLC-MS/MS (Ultra Pressure Liguid Chromatography
coupled with tandem mass spectrometry), programmed in MRM (Mul-
tiple Reaction Monitor) mode with two transition/molecule (Wiest et
al, 2011),

Method validation was carried out according to European Union Di-
rective 2002/657/CE (EU, 2002) at concentration level of (.25-2.5,
5.0 ng/g depending on sensitivity of molecules. Limit of Detection
(10D} and Limit of Quantification (LOQ) were calculated {Table 1), All
the collected pollen samples were analysed.

24, Hazard characterisation and statistical analysis

Samples with concentrations between the LOG and the LOD were in-
cluded in the calculation of the mean using the arithmetic mean of LOG
and LOD {Chauzat et al, 2006, 2011). Samples with concentrations
lower than LOD were not included in the calculation of the mean
{Chauzat et al, 2011),

We estimated the maximum Hazard Quotient (HQ) for honey bees
for each single pesticide overall (Table 2) and for each sample across
space and time (Fig. 2) using the methods described by (Stoner and
Eitzer, 201%; Traynor et al, 2016). Bmﬂy he HG was calculated divid-
ing the maximum residue (g kg™ 1) of each pesticide by its respective
oral LDsg (g bee™ 1) (EFSA, 2011). We used the LDsg values {Supple-
mentary Table $1) reported by the University of Hertfordshire Pesticide
Properties DataBase {Lewis ot al, 2016). We estimated the HQ of pollen
samples which typically contained multiple residues, assuming additive
toxic effects. We excluded possible synergistic or antagonistic effects
due tolack of quantitative data on interactions between most of the pes-
ticides under assessment. Based upon the average daily pollen con-
sumption of a nurse bee {9.5 mg/bee/day, {Crailshebm et al, 1892)), a
Hazard Quotient of 1000 corresponds to consuming 1% of the median le-
thal dose {LDsq) per day, which adds up to 10% after the 10 day nursing
phase {assuming no degradation or detoxification). Using a standard
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Tabie

List of screened active ingredients with respective Limit of Quantification (LOQ) and Limit of Detection (LOD).

Active ingredient LOD (g kg ) LOQ (ug kg™ 1) Active ingredient LOD (ug kg™ 1) LOQ (ug kg™ )
2.50 7.50 Flusilazole 0.25 2.50
1.00 5.00 Fluvalinate 2.50 7.50
Azoxystrobin 0.25 2.50 Heptenofos 2.50 7.50
Benalaxyl 0.25 2.50 Imazalil 0.25 2.50
Rifenthrin 2.50 7.50 Tmidactoprid 0.25 250
Biterfanol 0.25 2.50 Iprovalicarb 1.00 500
Boscalid 2.50 7.50 Kresoxim methyl 2.50 7.50
Buprofezin 2.50 7.50 Lambda-Cyhalothrin 2.50 7.50
0.25 2.50 Linuren 2.50 7.50
0.25 2.50 Malathion 1.00 5.00
1.00 5.00 Mandiproparid 0.25 2.50
1.00 5.00 Metalaxyl 1.00 5.00
2.50 7.50 Mevinphos 1.00 5.00
1.00 5.00 Nuarimol 1.00 5.00
Cyazofamid 2.50 7.50 Oxadixyl 1.00 5.00
Cyfluthrin 1.00 5.00 Parathon 2.50 7.50
Diazinon 1.00 5.00 Parathon methyl 2.50 7.50
Dichiorvos 2.50 7.50 Phenthoate 2.50 7.50
it tuanid 1.00 5.00 Phosmet 0.25 2.50
Diethofencarb 0.25 2.50 Pir b 1.00 5.00
Difenoconazole 0.25 2.50 1.00 5.00
Dimethoate 0.25 2.50 1.00 5.00
Esfeavalerate 2.50 750 3 0325 250
Ethion 2.50 7.50 Propyzarnide Lo 5.00
Etofenprox 2.50 7.50 Pyrazophos 0.25 2.50
Etrimfos 2.50 7.50 Quinalphos 250 7.50
Fenarimol 2.50 7.50 Spirexarnine .25 250
Fenazaquin 2.50 7.50 Tebuconazole 0.25 250
Fenbuconazoie 1.00 5.00 Tebufenpyrad 1.00 500
Fenthexarmid 0.25 2.50 Thiamethoxam 0.25 2.50
Fenitrothion 2.50 7.5 Thiabendazole 2.5 7.50
Fenthion 2.50 7.5 Tolyfluanid 25 7.5
Fluopicolide 3.00 10.00 Trifloxystrabin 4.25 250

safety factor of 1/10th of the LDsg (Atkins et al, 1981), the HQ value of
1000 would correspond to the threshold at which a pesticide elicits
toxic effects, and is therefore considered as the Hmit of concern for
bee health (Stoner and Eitzer, 2013; Traynor et al, 2018),

Maximum residues detected in the pollen were compared with the
Acute Reference Dose (ARD), the Acceptable Baily Intake {ADI), and
the Maximum Residue Limit (MRL) in pollen (EU data on residues of
vegetal pollens—honey and other apiculture products) {European
Commission, 2018). ARID is the amount of a chemical that can be con-
sumed by a person at one meal or on one day that would lead to no
harm, and ADI is the quantity of a chemical that can be consumed
every day for a life-time causing no harm {on the basis of all known
facts) (Renwick, 2002). MRL is the maximum concentration of pesticide
residue legally permitted in or on food commodities or animal feeds
{EFSA, 2017).We used JMP v.10.0 {SAS Statistical Software) for the sta-
tistical analysis, and DIVA-GIS v.7.5.00 (hitp:/fwww.diva-gisorg/) to
create the map in Fig, 1.

3. Resulis

Of the 554 pollen samples collected in the 3 year survey, 62%
contained at least one of the screened pesticides (Table 3}, The overall
rate of multiresidual samples (38%) was higher than the rate of single
pesticide samples (24%), and up to 7 pesticides per sample were
found (two samples in 2012, one in 2013; Table 3).

Pesticides contaminated the samples in all months and years, except

3, and March 2014 (N = 3) {Fig. 3. Table 3}. Overal, 18 dif-
ferent pesticides were detected, 10 fungicides and 8 insecticides {Table
2, Supplementary Tables 51 and $2).

Eight systernic pesticides {6 fungicides and 2 neonicotinoid insecti-
cides: imidacloprid and thiamethoxam) contaminated 36% of the posi-
tive samples overall {Table 3).

Seven pesticides were present in all 3 years of the survey {Table 2,
Supplementary Table 51), The pesticide which was most frequently
detected was the insecticide chiorpyrifos (30% of the samples overall,
46% in 2014), followed by the fungicides mandipropamid (19%).
metalaxyl (16%), spiroxamine {15%) and the neonicotingid insecticide
imidacloprid (12%). Of these, metalaxyl was the one with the highest
mean and maximum level of residues {respectively 60 ug kg™ ' and
2463 g kg™, June 2012, Apiary 1 in Giavera del Montello (TR}, Vene-
to), and with the highest overall mean vahie of residues exceeding the
MRL. Three other pesticides had maximum residue levels over 100
ug kg~ ! mandiproparnid (261 pg kg™, June 2012, Apiary 2 in Giavera
del Montello (TR), Venetn), chlorpyrifos (179 ug kg7, July 2014, Cister-
na d'Asti, Piemonte) and dimethoate (163 ug kg™ ', same sample that
contained the highest level of metalaxyl: June 2012, Apiary 1 in Giavera
del Montello). We observed a seasonal effect, with slightly higher rates
of positive samples in the summer months {Table 3, Fig. 3). However,
some apiaries were consistently contaminated by pesticides throughout
the season, and over the years (for examiple in Cisterna dAsti in Piemon-
te, and Ponte in Valeelling in Lombardia, Fig, 2).

in 8 of the 11 regions in which the sampling took place, more than
half of the collected samples contained residues of one or more pesti-
cides {Supplementary Fig. 51). Emilia-Romagna (N = 10) and Puglia

all samples in E-R, and all but one in Puglia, The regions with the highest
number of samiples collected showed a consistently high proportion of
positive residues (Veneto: N = 105, 60% positive samples; Piemonte;

The Hazard Quotient was higher than 500 in 9% of the positive
samples, and 3% had an HQ higher than 1000 (Fig. 2). The
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4 < é = 5 i P B B e et e Bl e BB Bl e B e £ pyrifos were also found with high frequency and high levels in samples
Rl - % . of organic honey collected in Italy {Chiesa et al,, 2016),
S e dg 2 = N . , . . .
o e g o Hor s +, in the LS., a survey of pesticide residues on hive matrices, found that
& s Y H &AW b < . e . P
CR2LE B S 2 = 5 fcj 4 3 2 chlorpyrifos was the third mwost prevalent and abundant pesticide de-
e oL e e Bt o B = BN > o . . . E - . -
285 R R 285 R B j g g tected in the hive (Mullin et al, 2010). DeGrandi-Hoffman et al
= R a1z U8 383 A o249 i . 1
f‘f é g § 5 é SEEEE % E“ﬁ éf (2013) showed rhar‘sub}ethaﬂ exposure of chlorpyrifos {967 pg kg™ !
4 & B in polien, 310 ug kg ' in bee bread, 81 pg kg™ in bees nursing gueens,
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Region and Municipality {Province} of the apiaries

LS50 {ug bee™ 1) (EFSA, 2011). We estimated the HQ of pollen samples which typically cont
interactions between most of the pesticides under assessment. The H{} is reported when at le
sample). {For interpretation of the references to color in this figure legend, the reader is referred
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Table 3
Pasitive pollen sarnples across years (2012-2014) and months (3-9, co

ponding to March-5
fungicides and the frequency of systernic pesticides {which may be either insecticides or fungici

S. Tosi et al. / Science of the Total Environment 615 (2018) 268-218

ternber). We also report the percentage of positive sarples containing insecticides or
). We only show the positive results (>0%).

Year Month N Positive samples (%) N of detected ai (% positive) Al type (% positive)
i 2 3 4 5 G 7 >1 Insect. Fung. Syst.
2012 4 20 60 25 20 5 5 5 35 88 12 23
5 37 73 14 35 16 5 3 59 44 60 27
& 56 86 23 16 13 13 11 g 2 63 24 75 39
7 60 60 7 15 1 10 5 4] 2 43 46 54 36
8 39 8 5 3 3 60 44 80
4 26 31 31 63 38 50
Total 238 56 18 15 g 7 5 2 1 38 39 a1 36
2013 3 & 53 33 17 17 75 25 50
4 6 a7 33 17 17 33 26 14 43
5 22 68 50 18 18 24 1 37
G 41 63 24 15 7 7 5 2 2 39 5 55 42
7 50 62 28 8 12 8 2 4 34 59 41 37
8 23 35 22 4 9 13 46 54 35
g 4 It}
Total 152 57 29 11 8 5 2 2 1 28 57 43 44
2014 3 2 100 100 ¢ 100 3 ¢
4 24 58 42 8 8 17 83 20 35
5 33 64 21 3 24 15 42 36 64 38
6 46 85 20 17 24 4 9 7 a5 28 70 38
7 36 21 25 25 19 11 56 38 65 32
2 16 75 38 25 13 38 70 30 15
9 7 43 29 14 4 75 25 25
Total 164 73 27 15 18 5 5 2 46 44 60 34
Overall 3 8 63 50 13 13 83 17 33
4 50 60 34 14 8 2 2 26 85 15 33
5 492 68 25 20 15 8 1 43 45 5 33
6 142 79 23 15 13 10 8 & 1 56 30 69 39
7 147 66 22 18 14 7 5 1 1 44 48 53 35
8 73 28 17 & & 13 &3 39 32
9 30 27 3 3 67 33 42
Total 554 62 24 14 12 6 4 2 1 38 44 56 36

in average) reduced queen emergence, possibly due to compromised im-
munity in developing queens, Urlacher et al. (2018) found that bees fed
with doses (~0.05 ng bee™ ') -3000 times lower than its LDs
{250 ng bee™ YLewis eral, 2016)) had slower appetitive learning ability,
and a reduced specificity of memery recall. Seventeen percent of our pol-
len samples contained doses of chlorpyrifos higher than 0.05 ng bee ™!
{corresponding to 4.17 ug kg™ ', based on the maximum daily pollen
consumption of a bee, 12 mg/bee/day, EFSA, 2012), and could therefore
elicit sublethal effects on bees, Learning and memory are of utmost im-
portance for the behaviour of foraging bees, and their impairment may
result in negative consequences for colony health and survival (Henry
etal, 2015, 2012). The high proportion of samples containing chiorpyri-
fos found in this study, combined with the relatively high average level of
residues and Hazard Quotient are of great concern for the health status of
honey bees and other pollinators, especially considering that the use of
chiorpyrifos is globally widespread.

The risks posed by chlorpyrifos on human health, especially on child
neural development, caused the United States Environmental Protec-
tion Agency (US EPA) to ban its use as a household pesticide (US EPA,
20114, 2011b), In October 2015, strong of further evidence on the risk
to human health, EPA proposed to revoke all food residue tolerances
for the insecticide chilorpyrifos (US EPA, 2015), which would signify a
ban on all agricultural uses, In Europe, in 2014, the European Food Safety
Agency (EF54) published an updated toxicological risk assessment of
chlorpyrifos for humans, in which, in the light of the new available
data, the reference toxicological values were decreased (EF54, 2014),
EFSA also highlighted the risks of exceedance of the Acute Reference
Bose deriving from the current agricultural use, Our study confirms
the results of the EFSA modeliing: 99% and 52% of the samples with
residues of chlorpyrifos exceeded the new ADL {1 ug kg™ ') and ARID
(5 ug kg™ ') safety values, respectively.

Over the 3 years, 13% of the monitored apiaries were exposed to res-
idue levels considered of concern for bee health {Hazard Quotient

higher than 1000). Four insecticides had the highest maximum HGQ,
the neonicotinoids imidacloprid and thiamethoxam, and the organo-
phosphates dimethoate and chlorpyrifos (Table 2, Fig. 2). The wide
and diverse contamination observed for the different apiaries shows
that specific risk levels apply to each location {Fig. 2}, likely depending
on local forage availability, mode of pesticide application, and specific
microclimatic conditions, This explains the difficulty in generalising
conclusions on the impact of pesticides on honey bee health,

The use of three neonicotinoids {imidacloprid, dlothianidin and
thiarnethoxam} was restricted for certain uses by the Italian govern-
ment in 2009 and by the El in 2013, as a consequence of their side-ef-
fects on honey bee health. The EU restriction prohibited the use of
imidacloprid, dothianidin, and thiamethoxam in seed treatments, soil
treatments, of spray treatments before and during flowering, on crops
attractive to bees (uses in greenhouses are allowed) (EL, 2013), Howeyv-
er, 2 of the 3 negnicotinoids screened in our study {imidacioprid and
thiamethoxam) were detected in pollen samples within all 3 sampling
years (17% of neonicotinoids positive samples overall, see Table 2 and
Supplementary Table 1), with high maximum HQ levels, Imidacloprid
concentrations were higher than the lHmit of concern (HQ > 1000, see
Material and methods) in 12% of its positive samples, Therefore, despite
the acrual neonicotinoid use restriction, honey bees are still exposed to
alarmingly high levels of these pesticides, Possibly, bees foraged on wild
flowers blooming in proximity of crops that were non attractive to bees,
and therefore legally sprayed with neonicotinoids. In fact, the inclusion
of flowering strips, buffer zones, and cover/catch crops as good farming
practices can increase the exposure of bees through drift of pesticides
out of the treated fields {David et al, 2016; Simon-Delso et al, 2017},
Furthermore, pesticides, especially systemic ones, may be found in envi-
ronmental reservoirs, such as soil and water, thus providing multiple
routes for exposure of wildlife (MNavarro et al,, 2007; Samson-Robert et
al,, 2014). Some systemic pesticides such as neonicotinoids {ie.
imidacioprid, thiamethoxam) are also particularly persistent in soil
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Fig. 3. Number of single-residue (light grey} and multiresidual {dark grey) pollen sarnples in relation to year (2012-2014) and month (3-9, corresponding fo March-September) of

collection by the bees. Sample size and further defails are reported in Table 3.

{Botias et al,, 2015; Goulson, 2013; Jones et al, 2014). As a consequende,
the plants could take up the pesticide years after the actual treatment,
resulting in prolonged contamination across years.

All apiaries in this study were located in agriculeural areas, thus in-
creasing the likelihood of occurrence of plant pest control treatments
containing the detected pesticides {see Supplementary Table 52 for de-
tails on pesticides use). More than half of the source apiaries were man-
aged according to the organic production rules set down in the EU
regulation N.889/2008 (European Comunission, 2008}, which prescribes
that “the siting of the apiaries shall be such that, within a radius of 3 kim
from the apiary site, nectar and pollen souices consist essentially of or-
zanically produced crops and/or spontanecus vegetation and/or crops
treated with low environmental impact methods. |...] The above men-
tioned requirements do not apply where flowering is not taking place,
or the hives are dormant”, Thus, organic beehives may be placed next
to non-organically produced crops that are treated with pesticides be-
cause they are either not considered as nectar and pollen sources for
bees (i.e. grapevines, olive trees), treated according to low impact

methods, or not flowering. Pesticides can thus be applied te the crops
around organic beehives in numerous occasions, and our study shows
that this happens routinely, exposing bees to pesticides e.g. through
drift on spontaneous plants. Our results thus guestion the current EU
legislation concerning organic beekeeping, The contamination of organ-
ic colonies by agricultural pesticides was likewise highlighted by Chiesa
et al. (20186), who found presence of pesticide residues in organic honey
samples. However, some pesticides that we detected could also be used
as veterinary applications (i.e. to treat livestock), indicating this as an-
other possible cause of contamination.

Fungicides were considered for a long time as being safe for honey
bees {¥iston et al, 2013; Everich et al., 2009; Malone et al,, 2007), and
are even sprayed on crops during blossoming. However, various studies
have shown that the impact of fungicides on bee health is not harmless.
For example, high pollen contamination by fungicides was refated to the
phenomenon defined “entombed pollen”, which was associated with
honey bee mortality {Chapman et al,, 2006). Pettis e al. (2013) found
that the consumption of pollen collected from US crops, with high levels
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of residues of fungicides, increased the bees’ likelihood of being infected
with the gut parasite Nosema ceranae, In Europe., a monitoring study
based on observation of 330 colonies, found a significant correlation be-
tween colony disorders {dead, weak or queenless) and the presence of
fungicide residues in the colony (Simon-Delso et al, 2014). Other studies
highlighted the presence of adverse synergistic effects on honey bee
health between fungicides, insecticides, and acaricides (Sanchez-Bayo
and Goka, 2014; Sgolastra et al, 2017a; Zhu et al, 2014), including ther-
moregulation impairment (Vandame and Belzunces, 1998) and reduced
repellency to pyrethroids (Thompson and Wilkins, 2003), BeGrandi-
Hoffman et al. (2013) found that the sublethal effects of chiorpyrifos
were greater when a fungicide which affects respiration (Pristine®
BASF, Research Triangle Park, NC, USA, containing the aa.ii. boscalid
and pyraclostrobin) was added to the pollen fed to the experimental col-
onies. A key role in the interactive effects elicited by pesticides mixtures
is playved by those fungicides that inhibit the detoxicative cytochrome
P450 monooxygenase activity, such as the DeMethylation Inhibitor
{DMI) tebuconazole (Johnson et al, 2013), that was found with frequen-
cies over 10% in our study, in ten cases together with imidacloprid
residues, and in one case together with both imidacloprid and
thiamethoxam. Fungicides also potentially disrupt honey bee mycofiora,
which is essential to process the pollen that will be stored in the hive as
bee bread (Yoder et al, 2013). Thus, the high level of fungicides found in
our study {56% of positive samples overall, Table 3) is cause for concern,
also because we show that in field conditions bees can be simultaneously
exposed to combinations of pesticides that elicit synergistic effects,
which may lead o severe negative effects on their health,

Monitoring residues in corbicular polien, as compared to beebread,
reduces the possibility of underestimating pesticide levels due to pesti-
cide degradation over time, and provides more precise information of
the actual period of exposure. In fact, the beebread can be stored in
the hive for months after collection in the field, while our corbicular pol-
fen was sampled at maximum 7 days after collection. Also, because we
samipled the pollen before its introduction into the hive, we can assume
that the detected residues originate from applications on agricultural
crops and not from treatments within the hive. Thus, we desume that
the presence of chlorfenvinphos residues was not due to the use for
control of Varroa destructor {Boi et al, 2016; Serva-Bopvehi and
Crantes-Bermeio, 2010) but to illegal applications on agricultural
crops, Our results highlighted that pesticides were present in the bee-
collected pollen throughout the active beekeeping seasons (Fig. 3 and
Table 3). Persistent sublethal pollen contamination may cause extended
perinds of immunosuppression among immature and adult bees, open-
ing the way to viruses and other pathogens (DeGrandi-Hoffman et al,
2013). The prolonged and concurrent contamination by mulitiple pesti-
cides of different chemical groups, evidenced in our study, could lead o
adverse chronic and synergistic effects (Gill et al,, 2012; Sanchez-Bayo
and Goka, 2014; Sgolastra et al,, 20173; Zhu et al, 2014),

The results of our survey raise concern on the side-effects on human
health, considering that we found residues of both illegal pesticides and
iltegal concentrations of authorised pesticides (39% of residues exceeded
the U Acute Reference Dose, the Acceptable Daily Intake and/or the Max-
i Residue Limit), Although there are no official data on the market of
polien as a food supplermnent, apicubtural experts report that production of
pollen is increasing to satisty a growing consumer demand (an Internet
search for “pollen” in ltalian will vield hundreds of websites citing the
beneficial properties of bee-polien consumption . Of the beekeepers in-
volved in this study, 50% were collecting pollen for human consumption
{personal or commercial), while another 20% were planning to start com-
mercial pollen collection bur gave up due to the results of this study,
which show that pollen can harbour levels of pesticides not considered
acceptable for human health, instead of being a natural "superfood”. Cur
resuits show that the current agricultural prescriptions are not sufficient
to ensure the safety of bee matrices, and consequently cause economic
damage to beekeepers, especially those managing their hives according
to the organic methods,

5. Conclusions

This 3-year monitoring survey showed a widespread and prolonged
pollen contamination by multiple insecticides and fungicides under the
current agricultural pesticide application practices, strengthening the
evidence that managed and wild pollinators in rural areas, even those
supposedly managed according to low environmental impact methods,
are routinely exposed to multiple pesticides (Botias et al, 2017; David et
al., 2016; Hiadik et al, 2016; Lambert et al, 2013; Long and Krupke,
2016; Mullin et al, 2010; Pettis et al,, 2013}, The frequently high values
of Hazard Quotient, Acute Reference Dose, Acceptable Daily Intake, and
Maximum Residue Limit show that the pesticide contamination levels
in the environment are cause for concern for bee, human, and environ-
mental health. Our results also suggest that pesticide risk assessment
procedures should investigate field-realistic exposure to pesticide com-
binations. Finally, we demonstrate that bee-collected pollen monitoring
is a valuable tool for environmental monitoring of pesticide contamina-
tion, including the detection of illegal uses.

The residues of pesticides detected in sach of the 3 years of the
survey are reported in Supplementary Table 51, and more details on
their use is reported in Supplementary Table S2. Supplementary Fig. 51
reports positive and negative samples (N) per region.

Supplementary data associated with this article can be found in the
online version, at https://doiorg/10.1016/Lscitotenv. 201 7.09.226.
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